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In 1958 L. V. Ovsyannikov posed to me the problem of studying the first boundary-value 
problem for the equation Au = u 2. This problem arose in a study of near-sonic gas flows 
[I]. The first results were obtained in 1960-1961 [2-4]. In 1979 a method of separation 
was proposed in [5] and later developed in [6] for studying nonlinear boundary-value prob- 
lems in general. 

In this paper this method is employed to study the problem posed by h. V. Ovsyannikov. 
We proposed this problem in the past as one of the applications of the method of separation. 
The results obtained by this method overlap previous results found by other methods. The 
result that the solution of a special boundary-value problem for the equation Au = u 2 is 
unique is presented separately. This theorem follows both from the results of Keedy in the 
exposition of Dancer [7] and the work of Cidas, Ni Wei-Ming, and Nirenberg [8]. 

i. Derivation of the Equations. The study of three-dimensional near-sonic flows of 
an ideal polytropic gas leads, as Ovsyannikov showed [I], to an equation of the type 

,9,~+ a%_ ~0- (u--l) ~ 
0x z Og z Oz'- 

(u is the reduced projection of the flow velocity on the z axis). The exact solutions of 
this equation are: 

u(x, y, z ) = t  + u0(.~, u) -< u~(.~, u)z + 
+ (l!~2)u2(:r, y)z 2 

H e r e  t h e  f u n c t i o n s  u o ( x ,  y ) ,  u z ( x ,  y ) ,  a n d  u 2 ( x ,  y )  a r e  f o u n d  f r o m  t h e  e q u a t i o n s  

l 9 2 i~gt~) - -  -~- tt2~l 0 : _Ul; ( 1. 1 ) 

J u  l -  ~2u.~ = O; ( 1 . 2 )  

2=0. (1.3) Al$ 2 -- u 2 

Thus the determining equation is Eq. (1.3). 

In the case of near-sonic flows adjacent to the sonic plane z = 0 on which u -- 1 we 
have u0(x, y) -- ul(x, y) ~ 0, and then the system (1.1)-(1.3) reduces to the single equa- 
tion (1.3). We note that the positive solution of this equation corresponds to supersonic 
flow while the negative solution corresponds to subsonic flow. 

The equation Au = u 2 also arises in the study of some other physical processes. This 
equation is also of definite interest from the viewpoint of the theory of nonlinear equations 
as an equation with a leading operator that is even and nonlinear. 

2. Formulation of the Problem. Let ~ be a bounded region in R n, n <_ 5, with a smooth 
boundary 3~. 

We shall study in the region ~ the boundary-value problem 

A(I) -t- (I)a --= 0 in  .Q, q) = ]?,(x) on 0 9  with ]~ ~__ ]u ( 2 . 1 )  

We note that the equation under study is equivalent by virtue of the substitution ~ + ~i = 
-% to the equation A~ = ~ 2 

Let H be a harmonic function from W21(~) such that AH = 0 in ~ and H = h(x) on ~2. Then 
the starting boundary-value problem is equivalent (r = u + H) to the following problem: 
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Au @ (U @ H(x)) ~ :-: ()in i), u. : :  0 on 0Q. 

T h i s  p r o b l e m  c o r r e s p o n d s  t o  t h e  f u n c t i o n a l  

( 2 . 2 )  

/(~0= ID~I ~dz+ -- ~ (u + H? + -5- ~~ ~z 

in the Sobolev space ~ 2 1 ( a ) w i t h  the norm I'lL(I! .... ([]DzL[2d.~'~ ~'~. Then u is the critical point 

o 

from Wel(~) of the function f, i.e., f'(u) = 0 is a solution of the boundary-value problem 
(2.2), and vice versa. 

3. Decomposition by the Method Of Spherical Separation. Following the method of sphe- 
rical separation [5] we represent the solution sought u(x)~ 0 of the boundary-value prob- 
lem (2.2), i.e., the critical point u ~ 0 of the functional f, in the form u = tv, where 
te R and ve S = .{we ~21(~)[IIwlI = I}. Then 

( ~ ,=_ v1<,.~ c I'l D, I ~ ~. = I'!. 

The equation f'(u) = 0 with u ~ 0 is equivalent, by virtue of the method of separation 
[5], to the system 

h ~ 2t - -  2 iI (tv + H/cdo,: : 0; ( 3 . 1 )  

~,-------- 2 ( t z ' +  H)~t- -  --).kv. ( 3 . 2 )  

Here X is the Lagrange multiplier of the variational problem for the conditional critical 
point ve S of the functional f(tv). 

From the scalar equation (3.1) for t we find 

l - -  ~ fo r  i = t, 
with ~'i=: [ j for i =  2 

and the functionals Fi(v) = f(ti(v)v) (i = i, 2) with [u3dx+~O. 

Then Eq. (3.2) is equivalent to the condition for the existenceoof critical points of 
the functionals F l and F 2 on the unit sphere S in the Sobolev space W21(~). 

Analysis shows that the functional F I is defined for all we B I = {we W21(~)[llwll ~ i},, 

while F 2 is defined for u,~B~ w~_II2(,.)1 zvSd x = O  

4. Existence of Real Solutions. It is obvious that the boundary-value problem (2.1) 
does not have a real solution for arbitrary right sides h from the indicated class. For 
the real boundary function he W21/2(8~) we assume that the harmonic function H corresponding 
to it satisfies the equations 

sup ( Hw2dx < ti2; (4. i) 
w E B  1 

f 1 inf '1 2 Hw~'dx 4 H"-wdx j w~dx} �9 > O. ( 4 2 ) 
U ' ~ B  1 '~2 ) " 
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Under the assumptions made we have 

sup  1,'~ (~) = sup t-'., (v) - -  § ~ ,  
w~--=B 1 v~-S 

inf t: 2 (w) > - -  c~, inf F a (w) > - -  co. 
w~.B  1 w ~ B  l 

We note that for H(x) = 0 almost everywhere in ~ one solution of the problem (2.i)is the 
trivial solution. For this reason it is proposed below that 

In this case inf F~(u,)<0. For the functionals F l and F 2 in the unit sphere B ! of ~he 
W~B I 

space W21(e) there exist corresponding minimum points w I and w 2. For the functional Fl at 
the point w le B l we have F1(w I) =min F1(w)<0. From the representation for tl(w) and 

W~B~ 

Fl(w) we find that w I ~ 0 and tl(w) ~ 0. 

We further establish that at the point w I the functionals t I and F l are differentiable. 
Then the structure of the functional F l determined by the method of spherical separation 

[Fl(w) = f(tl(w)w), where tl(w) satisfies the equation t - - j ( t u ' §  H ) ~ z c d 2 = O  ] ,  shows that the 

minimum point w I e B l belongs to S and is therefore a conditional critical point of the func- 
tional F I on the unit sphere S. 

It follows from the method of separation [5] that u I = tl(wl)w i is the real critical 
point of the functional F I, i.e., the real nontrivial solution of the problem (2.1) under 
the above-indicated conditions (4.1)-(4.3) on the real function h from the corresponding 
class. 

We shall now examine the functional F 2 under the conditions (4.1) and (4.2) for which 
there exists a point w 2 e B I corresponding to a finite minimum in the unit sphere B I. At 
this point w 2 ~ 0 we find that the functional t I is differentiable and t2(w 2) ~ 0. Then 
the structure of the functional F 2 shows that this minimum point lies on the unit sphere S. 

It then follows from the method of separation [5] that u 2 = t2(w2)w 2 is the real solu- 
tion of the boundary-value problem (2.1) with the conditions (4.1) and (4~ 

Summarizing the results obtained and taking into account the trivial solution of the 
problem (2.1) (with h = 0) we obtain the following result. 

THEOREM 4.1. Let the real function h of the boundary-value problem (2.1) belong to 
the space W21/2(~) and satisfy conditions (4.1) and (4.2). Then the boundary-value problem 
(2.1) has different real solutions u~ and u 2. 

The fact that ul(x) ~ u2(x) follows from the inequality tl(wl)w~(x) ~ t2(w2)w~(x). 

5. Absence of a Real Solution. The method of spherical separation applied to problem 
(2.2) establishes an equivalence between the variational problem 

/(~) = ~i ( 5 .  l) 

in the class of nontrivial solutions from W2~(Q) and the system 

<i'~,w) v> ~ 0; ( 5 . 2 )  

t~ (~., := %kv ( 5 . 3 )  

with f'(tv) ~ -2tAv - 2(tv + H) 2 in the class of solutions (t, v) from (R\{0}) • S, where 

s = iv .! I I ex  = 

By v i r t u e  o f  g q .  ( 5 . 2 )  t h e  s y s t e m  ( 5 . 2 )  and  ( 5 . 3 ) ,  i n  i t s  t u r n ,  i s  e q u i v a l e n t  i n  t h e  
indicated class of solutions to the system 

( / ' ( t v ) ,  ~'> - -  (i, / ' ( ~ )  = O. (5.4> 
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The absence of a solution (t, v) from (R\{0}) • S of this system leads to the absence of 
a solution u ~ 0 of the starting variational problem (5.1). 

Now let ~ be an arbitrary function from W=~(~). It then follows from (5.4) that 

q ' ( tv ) ,  v> = O,</(tv) ,  ~> = O. ( 5 . 5 )  
o 

For t h i s  r e a s o n  i f  t h e r e  e x i s t s  a c o r r e s p o n d i n g  f u n c t i o n  ~ e  W21(~) f o r  which ( 5 . 5 )  does 
not have a solution with t ~ 0 and v~ S, then the starting variational problem (5.1) also 
does not have a solution u ~ 0 from W21(~). 

System (5.5) for problem (2.2) has the form 

t - + = O,  - -  t j "  - -  + = O.  

o 

Here ~ is an arbitrary function from W~(fi). The first equation of this system can obvious- 
ly be derived from the second equation by setting ~ = v. 

We shall thus study the second scalar equation for t. It obviously does not have a 
real solution, if there exists a function @e W=~(~) such that 

(A~ + 2glI ' )rdz < 4 .  H~dz. t  I~'v~ V v ~  S. ( 5 . 6 )  
.q n 

On the other hand, for ~(x) e 0 in ~ we have 

Inequality (5.6) will hold if there exists a function ~ ~ 0 from W21(~) such that 

( x~ 2t/1]:) ~ dz < 4 ~ H"-~'dz. 
V 

n o 

Thus we o b t a i n  t h e  f o l l o w i n g  i n d i c a t i o n  t h a t  t h e  problem ( 2 . 1 )  does n o t  have a r e a l  
solution ~e Wzt(~). 

o 

Let there exist a function ~ _> 0 from W21(~) such that 

�9 

Then the boundary-value problem (2.1) does not have a real solution in the space W21(~). 

Choosing now the corresponding concrete functions ~ e 0 from W21(~) we obtain specific 
indications that the boundary-value problem (2.1) in space W21(~) does not have a real solu- 
tion. We note that the indication (5.7), unlike the traditional indications for the ab- 
sence of a solution for quasilinear, second-order, elliptical equations is not a point con- 
dition, but rather an integral one. 

We shall illustrate this for an example. Consider the boundary-value problem (2.1) 
where ~ is a unit circle in the plane R 2 centered at the origin of coordinates and the boun- 
dary function h in polar coordinates equals AcosS: 

AO+o~=0ine= {(x, y)~R~Ir ~=z ~§ (5.8) 
0 = m c o s  0 a t ,  r = I .  

Here A is an arbitrary real parameter. This example was chosen for two reasons. First, 
this problem is presented without analysis in a number of books (see, for example, [9]). 
Second, and most important, the traditional indications for the nonexistence of a real solu- 

2~ 

tion cannot be applied to it, since the mean boundary values vanish: SAo~ 
0 

172 



Inequality (5.7) for problem (5.8) assumes the form 

2.~ 1 

[ - - ~  + dAr cos rdrdO < O. 
O : O  r ~ O  

(5.9) 

We now choose as the function ~ the solution of the following problem with the parameter 
z: A~ = -(T + rcos@)(l - r 2) for r < i and ~ = 0 at r = i. This solution can also be writ- 

ten out explicitly and for T e 1/3 the function ~ ~ 0. 

We substitute the function ~, depending on T e 1/3, into the inequality (5.9). We then 
obtain a parametric inequality with �9 e 1/3 for A, and we find from it an estimate for iAl 
at �9 = (i + /5/2)/3, IA[ > 20.65. 

Thus, if A satisfies this inequality, then boundary-value problem (5.8) does not have 

a real solution in the space W21(~). 

6. Uniqueness of the Nontrivial Solution. Consider in the circle ~ = {(x, y) e ~21r2 = 

x 2 + y2 < i} the boundary-value problem 

A~ : ~in ~, ~L ~ <) on 0Q, (6.1) 

which has the trivial solution u1(x) ~ 0 and a nontrivial solution u2(x) < 0 in g. 

Ovsyannikov, in 1959, posed the question of the uniqueness of this nontrivial solution, 
which, by virtue of what was said in Sec. i, corresponds to the question of whether or not 
the regime of near-sonic flow of a gas is unique in the indicated class of solutions. 

The possibility of answering this question appeared after the publication of [7, 8]. 

Keedy's Theorem [7]. Let f be a real nonnegative analytic function. Then any solution 

of the class C2(5) of the problem 

is radially symmetric. 

Cidas-Ni-Nirenberg Theorem [9]. Let /: R-~R be a function of Class C l Then any 
positive solution of the class C2(~) of the problem 

is radially symmetric. 

Thus, by virtue of either of these theorems the nontrivial solution of problem (6ol) 
is radially symmetric. Indeed, after the substitution u + u I = -u either theorem is applic- 
able to the boundary-value problem 

--A~ 1 ~ : ~  in!], ~1== 0 on 0f2. 

It remains to verify that the nontrivia! solution u(r) of the class C2(~) of the boun- 
dary-value problem for the ordinary differential equation Au(r) = u2(r), u(1) = 0 is unique. 
For this we shall employ some arguments from [i0]. 

Assume the converse. Then there exist at least two nontrivial solutions ui(r) and u2(r), 
ul(r ) ~ u2(r) from the class C 2. From the general theory of quasilinear elliptical equations 
it follows that the functions ul(r) and u2(r) are analytic for r < i. Let ul(0) = c I and 
u2(0) = c 2 and, for definiteness, c 2 ~ c I. We note that c I < 0 and c 2 < 0. 

Then u I and u 2 are analytical solutions of the Cauchy problem 

u "  + (~,r)~' -:~L ~, O < l ' < l ,  ~(0) = c, ~'((I) = 0 ( 6 . 2 )  

with c = c I and c = c2, respectively. 

If c I = c 2, then by virtue of the fact that the solution of the problem (6.2) in the 
class of analytic functions is unique we obtain u1(r) ~ u2(r) for r ~ i. 

In the case c= > c I we shall study the function v(r) = k2ul(kr) with k = /~/e I < i, 
Then this function is a solution of problem (6~ with c = c2, and since its solution is 
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unique in the class of analytic functions we have u2(r) = kZuz(kr) for r < i. Setting in 
this identity the limiting value r = i, we find that u2(1) = k2uz(k) < 0, which contradicts 
the boundary condition for the solution u 2. 

We have thus established that the nontrivial solution of the boundary-value problem 
(6.1) in the circle ~ c R 2 is unique. 
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CONSERVATION LAWS, INVARIANCE, AND THE EQUATIONS OF GAS DYNAMICS 

S. M. Shugrin UDC 517.95 

In a large number of papers by L. V. Ovsyannikov, his students, and followers, an anal- 
ysis was made of group properties of many equations of mathematical physics and it was shown 
that a knowledge of group properties of the equations is useful for their classification 
and for obtaining particular solutions (see, for example, [1-3]). An inverse formulation 
of the problem is also possible: from a given group, sometimes with an additional assumption 
concerning the transformation law for the desired quantities, to seek the class of differen- 
tial equations invariant with respect to this group [4, 5]. A similar problem arose, in 
effect, at roughly the same time, from the theory of relativity, wherein the physics and 
mathematics began to search for equations describing the dynamics of some range of phenomena 
dependent on a knowledge of the laws of invariance. From this standpoint the most fundamen- 
tal object turns out to be a group, and the dynamic equation, in its way, turns out to be 
the "differential representation" of this group. And just as there exists a supporting theory 
of linear representations of groups, there exists, indeed, a theory of "differential repre- 
sentations." In this regard, it is necessary to turn our attention to the importance of 
rational structural limitations of the class of equations being sought. The fundamental 
equations of mechanics and theoretical physics possess a definite structure~ They are usual- 
ly quasilinear and admit a complete set of conservation laws (see Sec. I), and, consequently, 
have a symmetric structure [6-12]. A second simple, but useful observation, consists in 
the fact that the quantities being sought have, as a rule, a specific tensor type (scalars, 
vectors, etc.) with respect to suitable transformations. This holds even for the basic con- 
servation laws (mass, momentum, et al.). Only in quantum mechanics do quantities of another 
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